24 Jun 2019

Study: Top Feedstocks For Pyrolysis Biorefinery

A study into the composition and processability of different biomass feedstocks has found sunflower seed husks and poplar wood slabs to be the most suitable for producing bio-based products via fast pyrolysis conversion. The study was conducted by Capax Biobased Development and BTG Biomass Technology Group as part of the Horizon 2020 project Bio4Products, which is testing the feasibility of a fast pyrolysis based biorefinery concept.

Feedstock composition

A shortlist of 10 feedstocks were studied, focusing on residues from agriculture, food/feed processing and forestry: Hemp shives, Flax shives, Flax pellets, Wheat straw, Olive kernels, Sunflower husks, Poplar wood slabs, Softwood, Hardwood (poplar) and Phytoremediated poplar wood. These feedstocks were selected based on a previous study into biomass availability as well as their suitability for processing and sustainability parameters.

Capax first investigated the physical properties of each feedstock including particle size and moisture content. This was followed by a chemical characterisation, analysing lignin/cellulose/hemi-cellulose ratio, and ash and mineral content.

Effect on pyrolysis products and fractions

To analyse the effect on quality and yield of fast pyrolysis bio-oil – the main product of fast pyrolysis – each of the feedstocks were converted by BTG Biomass Technology Group at their plant in the Netherlands. The highest yield was obtained from the softwood dust, while the worst result came from the wheat straw.

Finally the bio-oils obtained from the different feedstocks were extracted to obtain lignin and sugar fractions. In general, no large differences were found during the extractions. Based on these results and other criteria including ease of handling and sustainability, a ranking was made, with sunflower seed husks and poplar wood slabs coming out on top.

New bio-based products

The lignin and sugar fractions are renewable chemical intermediates that are being used by downstream partners in the Bio4Products project to substitute fossil materials such as phenols and creosote. Hexion is using the pyrolytic lignin to replace fossil phenol in moulding compounds and insulation foams. TransFurans Chemicals are testing how the sugar fraction can be applied in furan based resins, and is working with Foreco to develop a formulation for wood modification.

Partners are reporting positive results, and it is expected that new bio-based products could hit the market soon after the project closes in 2020.

You can find the study in our resources section.

(Article sourced from: www.bio4products.eu)

20 Jun 2019

Karel De Winter

Job title: Team leader bioprocessing 

Company: Bio Base Europe Pilot Plant

Tell us about your education and working life up to now.

I pursued a PhD at Ghent University after obtaining my MSc in bioscience engineering. Thanks to the FWO Flanders (a Belgium public research council) I focused on research in the field of applied biotechnology. From this I presented in numerous international conferences, publications, patents and book chapters. Completing my PhD I joined the Bio Base Europe Pilot Plant (BBEPP) as an R&D project engineer where I currently lead a talented team in the field of industrial biotechnology.

What is your main expertise?

During my PhD I studied enzymatic glycosylation processes, enzyme engineering around the recombinant production and purification of proteins. Now at BBEPP I lead projects on biomass pre-treatment, biocatalysis, (gas) fermentation, downstream purification and green chemistry. In this broad area of industrial biotechnology, the team is focused on process development and scale-up, as well as food-grade applications,

What is your work focused on in the Rehap project?

BBEPP is involved in scaling Rehap's developed processes - the extraction of tannins, lignin and carbohydrates from agroforestry waste - as well as the subsequent fermentation of the obtained carbon source to diols, including their isolation. This latter process highlights the broad spectrum of technology BBEPP offers from biomass pre-treatment over fermentation to ATEX downstream processing.

What are the main challenges you face in this work and how are you meeting these challenges?

In the scale-up the most typical are linked to the broad spectrum of technologies applied. When scaling processes from lab to pilot scale, small challenges encountered in the lab such as purification steps, are exacerbated. For example, when extracting bark, a relatively simple process, it floats on water making it difficult to handle and pump. Also, the piloting phase is used to elevate the performance of any process with industrial equipment and so this is the stage where hurdles are typically encountered. A pro-active mind-set, flexibility and hands-on mentality are must-haves in any piloting environment.

How do you see your work helping the project achieve its main objectives?

Process development at lab scale is a high risk yet low capital-intensive operation. An industrial process on the other hand, typically requires a huge capital investment, but the associated risks from a technological point of view after often limited. Between both phases there is a distinct gap in the innovation chain. During piloting the technological risks are still obvious, while also large capital investments are required. Therefore, the use of shared pilot facilities allows this gap to be bridged in the most efficient way: forging equipment, utilities and in particular skilled and experienced workers. Scaling Rehap processes at BBEPP has allowed in-depth techno-economic assessments, as well as the generation of significant amounts of sample materials.

What impact do you see Rehap having in the future?

Some of the processes developed during the project certainly have potential for commercialisation. However, as is the case for many biotechnological driven innovations, policy makers will have to make sure a suitable environment is created to enable true market penetration.

When scaling processes from lab to pilot scale, small challenges encountered in the lab such as purification steps, are exacerbated

What do you enjoy more about working on a project like Rehap?

Working on the establishment of technology to convert agroforestry waste to building materials is both challenging and inspiring. Moreover, Rehap bundles a large variety of motivated people skilled in different domains. We are also blessed with a great coordinator who makes sure the entire project remains on track.

How would you like to see your work develop after the project ends?

I anticipate the Rehap results to contribute to a solid basis for further research and valorisation. For BBEPP, a continued collaboration with partners from the consortium would be beneficial. 

Meet the other brains behind Rehap

18 Jun 2019

The Assembly SusChem 2019

SusChem is the European platform for sustainable chemistry and will be holding the Assembly SusChem-Spain 2019 on the 26 June.

Rehap will be attending the assembly which will be focused on the next European Framework of Research and Innovation Horizon Europe program. The event will take place at the Ministry of Science, Innovation and Universities and address all issues related to future missions with public-private partnerships (SPIRE, BBI and Hyrdrogen and fuel cells) and new opportunities for the chemical sector. Five areas will be addressed in which chemistry will have a fundamental role.

During the session, among others, Aitor Barrio will present on the keys of, Systematic approach to reduce energy demand and CO2 emissions that transform agroforestry waste into high added-value products as presented in the Rehap project.

Another issue that will be addressed will be that 2020 marks the end of the current European Framework Program for Research Innovation, H2020. A specific session will assess its successor, Horizon Europe.

Read the program here (Spanish).

For more information, visit the website.

14 Jun 2019

EURO 2019 Conference

The 30th European Conference on operational research is taking place on 23 – 26 June 2019 in Dublin, Ireland, and Rehap will be in providing an oral presentation.

The Scientific and Organisation Committees, chaired by Luis Gouveia and Seán McGarraghy, along with Cathal MacSwiney Brugha, have prepared a high quality scientific program and an exciting social program for the conference.

At the conference, Rehap will be presenting during the Sustainable Supply Chains, Session WD22 – Energy Management, on Wednesday at 14:30 to 16:00.

The presentation will look in detail at the, Environmental benefits of a second-generation bioethanol production network designed by integrating Life Cycle Assessment and supply chain network optimisation.

For more information on what Rehap will be presenting, contact: amelia@ipl.eu.com

The full extensive online programme can be found on the website here.

03 Jun 2019

New poster on upscaling processes

TECNALIA and BBEPP are involved in developing an industrial scalable process to obtain lignin for further transformation into high value products. TECNALIA performed a mild extraction to dissolve lignin and further precipitated with sulfuric acid, whilst BBEPP scaled up this method.

To present this development a poster has been created titled: Lignin purification from poplar hydrolysis: From laboratory tests to pilot scale.

Click on the image below to see the complete poster.

 

 

 

 

 

 

If you are working on the Rehap project and would like a poster designed, please get in contact with Amelia at amelia@ipl.eu.com.

MENU